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A first integral of the general equation for axisymmetric shapes of lipid bilayer vesicles is obtained.
The relation between the widely used Helfrich shape equation and the general shape equation is clarified
and a modified version of the Helfrich shape equation that is equivalent to the general equation is pro-

posed.
PACS number(s): 68.15.+e¢, 46.30.—i

I. INTRODUCTION

For almost two decades the study of the equilibrium
shape of lipid bilayer vesicles in aqueous solution based
on Helfrich spontaneous-curvature theory [1], and espe-
cially the application of Helfrich theory in explaining the
usual shape of red blood cells obtained from normal indi-
viduals, has been an attractive topic. Among numerous
works dedicated to this study the Helfrich shape equation
describing axisymmetric vesicle played a special role.
This equation has been widely used to seek both analyti-
cally and numerically [1-9] the axisymmetric vesicle
shape in different conditions. Its successful application is
demonstrated by the very good agreement between the
theory and experimentally observed red-cell shapes [10]
obtained by fitting only one parameter. However, it was
noticed previously that the general shape equation de-
rived by Ou-Yang and Helfrich [11,12] in axisymmetric
case reduces to a third-order differential equation while
the Helfrich shape equation is a second-order one, and
that the equivalence of these two equations only holds for
describing the spherelike shapes of vesicles [13]. But the
systematic analysis on the relation between these two
equations has never been made.

There are three shape equations for axisymmetric vesi-
cles in use. They are the Helfrich shape equation, the
equation first derived by Peterson [6] and later frequently
used by Lipowsky and co-workers [14,15] and the
axisymmetric version of the general shape equation.
Very recently, Hu and Ou-Yang, based on the same bend-
ing energy of the spontaneous-curvature model, con-
sidered the difference among these equations from the
viewpoint of a variational method [16]. They correctly
pointed out that the shape equation adequate for describ-
ing an axisymmetric vesicle should be the one obtained
by minimizing the effective free energy of the vesicle with
respect to the variation of the infinitesimal normal dis-
placement from the equilibrium surface of the vesicle.
Among three shape equations, only the last one satisfies
this requirement. According to their analysis, the second
equation, which is of the same order as the correct third
one, should be abandoned. As for the first equation, after
comparing the exact solutions, they concluded that only
the sphere solution given by the Helfrich shape equation
is consistent with the solution of the general equation,
while two other exact solutions (cylinder and ring) from
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both equations are incompatible.

This new development, naturally, raised questions such
as the following: (i) Is there any general relation between
the Helfrich shape equation and the general equation? If
there is, what is it? (ii) How should one evaluate the pre-
vious results of vesicle shapes obtained from the Helfrich
shape equation, especially those results obtained numeri-
cally such as the biconcave shape of red blood cells, or
precisely stating, should they be completely abandoned or
are they still correct in certain conditions?

The purpose of this paper is to answer these questions.
The article is organized as follows. In Sec. II, by inspect-
ing the structures of the equations, the first integral of the
general equation is derived which reveals clearly the rela-
tion between the Helfrich shape equation and the general
equation. Based on this relation the validity of the Hel-
frich shape equation is examined. In Sec. III some con-
cluding remarks are made, and a modified form of the
Helfrich shape equation is proposed.

II. THE FIRST INTEGRAL
OF GENERAL SHAPE EQUATION

A lipid bilayer vesicle formed in aqueous solution is
considered as a simple model for biological membranes or
cells [17-19]; the equilibrium shape of the vesicles is
determined by minimizing the Helfrich curvature free en-

ergy [1]
F=1k,Plc,+c,—cp)?dd+rdA+p [av . (1)

In this expression k., ¢, and ¢, are the elastic modulus
and two principal curvatures of the vesicle surface; pa-
rameter c,, being a measure of asymmetry with respect to
the two sides of the vesicle membrane, is the spontaneous
curvature; p and A are two Lagrangian multipliers intro-
duced by the constraints that the volume and the total
area of the vesicle are constants—physically they can be
explained as the pressure difference across the membrane
and the tensile stress, respectively.

Considering a vesicle of an axisymmetrical shape,
denoting by p the distance between the symmetric axis
and a point on the contour of the vesicle surface, and tak-
ing the variation of the axisymmetric form of free energy
(1) with respect to the principal curvature along the
parallel of the latitude of the vesicle gives the Helfrich
shape equation
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where 1 is the angle made by the surface normal and the
symmetric axis of the vesicle. This equation has been
widely used to obtain different axisymmetric shapes of
the vesicle and fruitful results obtained as mentioned
above.

Another shape equation later derived by Ou-Yang and
Helfrich [11,12] can be applied to an arbitrary shape of
vesicles. In the axisymmetric case it reduces to [16]

308 4y 2447 dY | _%__'k+ in20— Leos?y) | 2L
cos”Y 4’ sini cos ¢ 2 dp o cos(sin“yp— ;cos Y dp
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»
Since the original equation is free of prior requirements e ~0 ©
on the shape of the vesicle, and in the derivation a varia- p cosy ’

tion is taken with respect directly to the surface, accord-
ingly it is more general than the Helfrich shape equation.
Therefore we call Eq. (3) the general equation describing
the shape of axisymmetric vesicles. It is rather impres-
sive that the exact ring solution, an axisymmetric shape
with a nonzero genus, was predicted [20] from the equa-
tion and later successfully confirmed by experimental ob-
servations [21,22].

The relation between Egs. (2) and (3) (or its original
version) was discussed by different authors and the
opinions are diverse, even contradictory. While Ou-Yang
and Helfrich claimed that the relation is inclusive by stat-
ing that the general equation (in its original version) “‘can
be obtained by generalizing and forming derivative” of
Eq. (2) without showing the explicit procedure [12,23],
one of the authors provided an explicit expression [Eq.
(22) of Ref. [13]] showing that the relation is only partial-
ly inclusive. Until very recently, Hu and Ou-Yang strik-
ingly challenged the correctness of Eq. (2) by claiming
that Eq. (2) was derived by erroneous application of vari-
ation method [16], which implies that the relation should
be exclusive.

To clarify this puzzling problem, by closely inspecting
the structure of Egs. (2) and (3), and guided by the ex-
pression (22) of Ref. [13], we notice that Eq. (3) can be ex-
actly expressed as

1

p dp
which can be proved by direct differentiation (for details
see the Appendix). This expression clearly reveals the
connection between Eqgs. (2) and (3), and indicates that
any solution satisfying Eq. (2) should be also a solution of
Eq. (3).

Integrating Eq. (4) yields the first integral of Eq. (3)

pH cosyp=C (5)

[pﬂ cosy]=0, 4)

or

where C is an integration constant.

Since expression (5) is the first integral of the general
equation (3), it equivalently determines the axisymmetric
shape of vesicles as Eq. (3) does. Accordingly, Eq. (6) ex-
plicitly indicates the missing term in the Helfrich shape
equation. One immediately conceives that the Helfrich
equation recovers to Eq. (3) only when the integration
constant C vanishes and that the general equation in-
cludes the Helfrich equation as a special case. For a
spherelike axisymmetric shape, since near the point on
the surface where the axis of symmetry passes we have
that p < ¢¥~o0(1); from Egs. (2) and (5) the constant C of
integration must equal to zero whenever dv/dp is finite
at the pole p=0. Thus Egs. (2) and (3) are completely
equivalent for spherelike cases which, fortunately, are the
only cases found in the literature when the Helfrich equa-
tion was used.

To illustrate the above statements we reexamine the
three well-known exact solutions, i.e., sphere, cylinder,
and ring solutions given by Egs. (2) and (3).

A. Spherical solution
Substituting the expression of a sphere with radius rg
p=rosiny 7))

into Egs. (2) and (3), respectively, the same relation be-
tween p, A, ¢q, and 7,

pro+2Ard+k.corolcoro—2)=0, (8)
is obtained [12,13,16]. Putting the same solution into Eq.
(6) gives

Cc=0, 9)

as it should be. The Helfrich shape equation coincides
with the general equation.
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B. Cylindrical solution

For the cylinder defined by

T
= =21 10
P=To > ¢ 2 ’ ( )
the relation obtained from Eq. (3) is
k
pr8+kr3+7c(c%r%—l)20 . (11

Since Eq. (2) is singular for cylinder, the limiting pro-
cedure cosyy—0 has to be taken. When Eq. (10) is substi-
tuted in Eq. (2), from the requirement that both the lead-
ing terms of singularity and the next order terms must
vanish we have

pri+2Aar+k (coro—1)>=0 (12)
and

2.2
a2k, | 20
0 c

=0. (13)

3
—2corot =
Co’o D)

The expressions (11) and (12) have been regarded as con-
tradictory to each other in Ref. [16] and hence as evi-
dence that the Helfrich equation is incompatible with the
general shape equation. However, by noticing the fact
that subtraction of (13) from (12) recovers relation (11)
and that substituting Eq. (10) into Eq. (5) gives

C=—

2ore [pri+2Aard+k (coro—1)7]. (14)
It is verified that the cylindrical shapes given by the Hel-
frich shape equation do belong to the class of cylinder
solutions of Eq. (3) with the additional constraint C=0.
It is interesting and surprising enough to be aware that
the cylinder determined with the Helfrich equation is
nothing but the only stable equilibrium cylinder obtained
from the general shape equation [12].

C. Ring solution
For a shape of ring scaled as
p=x+tsiny (0=¢=27), (15)

wher? 1/x is the ratio of its generating radii, Eq. (3) gives
(16]

/

/ 2

x=V2, A=k, |2co—— |, p=—2k.c,. (16)

The same substitution in Eq. (2) gives

x=V2, A=k, [2¢cp—— |,

a7
p=—2k,cy, co=—21.

Noticing that substituting expression (15) into Eq. (6)
yields

C=2cy+1, (18)

we see that the ring solution obtained from the Helfrich

shape equation falls into the class of ring shapes given by
the general equation. However, the ring shape given by
Eq. (2) is subject to one more condition ¢, = —1, which
comes from requirement C =0.

III. CONCLUDING REMARKS

In Sec. II the first integral of the general equation
describing the axisymmetric shapes of vesicles is derived.
Based on it, the systematical discussion of the relation be-
tween the Helfrich shape equation and the general equa-
tion is carried out. The validity of the Helfrich equation
is then clarified. To conclude we should like to em-
phasize the following.

(i) Up to now a rather rich variety of axisymmetric
shapes of spherelike vesicles has been explored with the
Helfrich shape equation by many authors. These results
should be positively valued as on achievement in the
study of lipid bilayer vesicle. For the spherelike shapes
these solutions are completely the same as those of the
general equation.

(ii) It is certain that the general equation describing the
axisymmetric shape of vesicles will provide richer vesicle
shapes than the Helfrich shape equation. However, be-
cause the general equation is a third-order ordinary
differential equation and highly nonlinear, it is difficult to
attack directly. The present first integral might reduce
the difficulty. From the first integral the Helfrich shape
equation can be generalized as

2
cosy d’y _sin2y) |dy | | cos’y dyp _ sin(2y)
dp® 4 dp p dp 2p?
2
___pp _ siny |sing e | — A sintp -0
2k,costp 2cosyp | p ° k.cosy ’
(19)
where
2k,C
p=p+——75. (20)
P

Equation (19) is identical to the Helfrich shape equation
except for the replacement of the constant parameter p
by a modified pressure difference p depending on p, k., p,
and C. Equation (19) is equivalent to the general shape
equation (3) and it reduces to Helfrich shape equation
when C=0. The existing numerical methods for Helfrich
shape equation may then be directly employed with only
minor modification.
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APPENDIX: PROOF OF EQUATION (4) d

1
In this appendix we prove Eq. (4) by direct p dp
differentiating expression p#f cosy term by term:

399%
cos:/zdp

2
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2 dp 2p dp Summing up the seven expressions from (A2) to (A8) and
(A3) grouping terms on the right-hand side carefully gives
J
3 2 3 2
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The right-hand side of this expression is exactly the left-hand side of Eq. (3), which directly leads to Eq. (4).
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